This is an old revision of the document!

Mathworks MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. Developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, and Fortran. (taken from, more details there)

Lizenz:University of Mainz
Toolboxes:Curve Fitting, Fuzzy Logic, Image Processing, Mapping, Compiler, Compiler SDK, Optimization, Parallel Computing, Partial Differential Equation, Signal Processing, Statistics and Machine Learning, Symbolic Math, Wavelet


$ module add software/matlab/R2015a

See the vendor documentation:

Using Matlab-Compiler

There are several options to compile your Matlab code to stand-alone executables/libraries. Being independent of licenses is one of the major advantages here, of course. But when running compiled code with the Matlab Runtime Envirenment (MRE) on the cluster you have to consider the threading of your code just as well as when you run Matlab itself. Generally, Matlab detects the number of physical cores and opens the same amount of threads to make full use of the multithreading implemented in the built-in functions. So, if you call

 mcc -m my_mfile.m 

you obtain multithread code. Often this might be wanted, but you have to make sure that you select the appropriate resources for this then - namely, the appropriate core-affinity. Since Matlab wants to use everything on a host you'll have to call bsub -n 1 -R 'affinity[cores(64)]' and an appropriate memory reservation. On the other hand, if your code doesn't need the full multithreading capability, which often is the case, you should compile your code with the flag 'singleCompThread'

 mcc -m -R -singleCompThread my_mfile.m 

. This makes sure that your standalone code will run on a single computational thread, which not only doesn't frustrate the core scheduler and the other users less but improves performance of your code because less time is spent in scheduling all the threads on one core.


# enable your environment, which will use .bashrc configuration in your home directory 
#BSUB -L /bin/bash 
# the name of your job showing on the queue system 
#SUB -J mytest
# the following BSUB line specify the queue that you will use, 
#BSUB -q short
# the system output and error message output, %J will show as your jobID 
#BSUB -o %J.out BSUB -e %J.err 
# the CPU number that you will collect
#BSUB -n 4
# as Matlab will occupy the FPU of a bulldozer module
#BSUB -R 'affinity[core(2)]
# when job finish that you will get 
# email notification BSUB -u BSUB -N 
#enter your working directory
cd /home/$USER/TestMatlab
# Finally, Start the program
/cluster/Lic_Apps/Matlab/R2013a/bin/matlab -nosplash -nodisplay -r main_matlabfile

For full nodes consider

#BSUB -n 32
#BSUB -R 'affinity[core(2)]
#BSUB -app Reserve3500M

as Matlab will not be able to fully utilize the node, but considers every FPU equal to a CPU.

Using the following shell script you can compile a m-file into a stand-alone c application. It's a variation of the script for using local scratch on a node.
# Store working directory to be safe
# We define a bash function to do the cleaning when the signal is caught
    cp /jobdir/${LSB_JOBID}/*$ ${SAVEDPWD}/
    cp /jobdir/${LSB_JOBID}/$FILENAME ${SAVEDPWD}/
    exit 0
# Register the cleanup function when SIGUSR2 is sent, ten minutes before the job gets killed
trap 'cleanup' SIGUSR2
# Copy input file
cp ${SAVEDPWD}/$FILENAME.m /jobdir/${LSB_JOBID}/
# Go to jobdir and start the program
cd /jobdir/${LSB_JOBID}
mcc -m $FILENAME.m
# Call the cleanup function when everything went fine
  • software/matlab.1496514119.txt.gz
  • Last modified: 2017/06/03 20:21
  • by meesters